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Abstract 

A large volume of research shows that humans reason poorly about conditional statements and 

that the formal notion of material implication is difficult to learn. Textbooks on logic have used a 

variety of approaches to the introduction and justification of a truth-functional definition of 

material implication. This paper surveys eight such techniques — definition by truth table, 

definitions based on other logical operators, the use of examples, ways of avoiding the need for 

a definition, an adaptation of Peirce’s notation, the motivation of universally quantified 

conditionals, the analogy with contractual reasoning, and finally a new suggestion based on 

elementary set theory. 

Motivation 

Material implication is an attempt to capture the essence of conditional statements: that is (in English at least), 

statements of the form “if ... then ...”. However, statements of this form have a variety of intentions, not all of 

which are truth-functional. Thus, no truth-functional definition of implication will be able to fully capture the 

diversity of meanings in conditional statements. 
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A large volume of research shows that people do not naturally reason well about conditional statements. For 

example, the innumerable variations of Wason’s Four-Card Selection Problem [see, for instance GILH88 

pp113–123, EVAN82 Chapter 9 and WASO83]. Further support for this claim comes from studies with late 

high-school students, college students and medical students by O’Brien and Shapiro which indicate that less 

than 10% of subjects reason correctly about conditional statements [OBRI72, OBRI73, SHAP73]. A large part 

of the confusion arises from misinterpreting conditional statements as bi-conditionals. (See [FULD89] on why 

this mistake is so easily made.) 

Furthermore, it is difficult for many students to accept the truth-functional definition of material implication. 

This is at least partly because it violates their intuition about conditional statements with false antecedents. To 

the student, it seems ludicrous to suggest that when a statement of the form “if ... then ...” has a false 

antecedent, the overall statement should be considered to be true. The truth table for material implication is 

not at all self-evident and must be accompanied by some explanation. 

Approaches to Explaining Material Implication 

Given the difficulties students encounter with conditional statements and with understanding the definition 

of material implication as a truth function, it is interesting to compare the methods used to justify this 

definition. There are many approaches to this — some indicate a primary concern with technical precision 

while others show varying degrees of concern for avoiding or alleviating student distress. After reading as 

many logic textbooks as I could find, I have gathered these approaches into seven categories which are 

described and critiqued below. An eighth approach is also suggested which I have not seen in any textbook. 

1. Definition by Truth Table 

Most commonly, material implication is defined by truth table [GRIM94, KOLM87, BAUM96] or some verbal 

equivalent such as “X→Y is always true if X is false and also if Y is true” [HILB50 p4] or “A conditional 

sentence is false if the antecedent is true and the consequent is false; otherwise it is true” [SUPP57 p6, see also 

GRASS96]. 

This definition is justified by the authors in various ways, though frequently no justification is given at all 

[HILB50, COOL42, WERK48, BELL77, ROBI79, MANN851, PAUL87, REEV90]. Quine claims that the given 

truth table “constitutes the nearest truth-functional approximation to the conditional of ordinary discourse” 

[QUIN40 p15] and adds that this definition dates back to Philo of Megara2. [AHO92], [DOWS86] and [BASS70] 

take the same approach, admitting that this truth function does not always match English usage. Suppes takes 

a bold approach and simply states that in maths and logic this is the way it is done! [SUPP57] 

Shoenfield defines material implication as a function rather than as a truth table, though the effect is the same. 

He claims that this definition follows the “mathematical meaning of if ... then” [SHOE67 p11]. 

A variant on the truth table approach, shown in Figure 1, starts by showing that sixteen distinct truth tables 

may be constructed for expressions with two variables. After columns 1 (tautology), 16 (inconsistency), 2 

(disjunction), 8 (conjunction) are discussed and named, the author draws the reader’s attention to column 5 

and says in effect “this is an interesting and useful column so let’s give it a name as well”. This approach is 

taken by [JEFF67 p49] and [KORF74 p254]. Jeffrey also comments “Except in odd cases the truth conditions 

for the indicative English conditional are accurately given by the usual truth table [i.e. Column 5 in Figure 1]” 

[JEFF67 pviii]. 
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Figure 1 — Sixteen Possible Truth Tables 

2. Definition in Terms of Other Operators 

Other authors define material implication as an abbreviation of some other boolean expression. The normal 

form of this definition is (PQ) =def (~PQ) [WHIT25, STEB46, STEB52, EATO31] while others use (PQ) 

=def ~(P&~Q) [QUIN41, COPI67, MITC62, CARN80, KIRW78, HOCU79]. Virtually all books show these 

equivalences at some point. Several texts explicitly note that the two definitions are interchangeable, and 

Ambrose and Lazerowitz make a major point of showing that not only can material implication be defined in 

terms of negation and conjunction, but one could equally well define material implication as the primitive 

operation and then define disjunction and conjunction in terms of negation and material implication3 

[AMBR48]. They prefer the definition (PQ) =def ~(P&~Q) over (PQ) =def (~PQ), saying that while the 

first makes good English sense, the second looks problematic, even though the two are provably equivalent 

[AMBR48 p75]. 

When Davis introduces the horseshoe operator (“”) he defines it to be equivalent to both ~(P&~Q) and 

(~PQ). Long before this, however, he discusses non-truth-functional conditional statements (using the 

symbols “” and “→”) and presents the idea of material implication in syllogistic arguments. [DAVI86] 

Like the explicit definition by truth table, this form of definition is sometimes not accompanied by any 

justification [WHIT25, STEB46]. In her later work, Stebbing notes that what ~PQ defines is material implication, 

which is not necessarily the same as the English “if ... then ...” structure [STEB52 p139]. 

3. Definitions Relying on Examples 

Several authors use selected examples (either in mathematics, science or conversational English) to justify their 

definition of material implication. Rosser uses some verbal trickery to show that English phrases of the form 

“if A then B” are the same as “we cannot have both ‘A’ true and ‘B’ false” [ROSS53, p15]. He also cites a number 

of mathematical examples. Massey uses the example that “If my memory is correct, then I owe you a dollar” 

means the same as “Either it is false that my memory is correct or else I owe you a dollar”. This example 

suggests that PQ is simply an abbreviation for ~PQ [MASS70 p52]. [See also GUTT71, KELL90, SAIN91, 

TUCK95, RUBI89, LABU93, CHUR90 and PRIO55.] 

Hermes claims that the structure ~(P&~Q) occurs frequently in mathematics and that mathematicians express 

this as “if P then Q”. With this as justification, he defines the two to be equivalent [HERM73]. Hamilton, 

writing specifically for mathematicians, justifies his truth table definition with the example “if n>2 then n2>4” 

which, he says, is still a true statement even when n happens to be less than two [HAMI78 p5, see also GRIM94 

p53]. 

Quine draws on an English example to convince the reader of his claim that “if P then Q” is equivalent to 

~(P&~Q), though he does this without explicitly constructing truth tables [QUIN41 p20]. In a later work, Quine 

writes — 

An affirmation of the form “if P then Q” is commonly felt less as an affirmation of a conditional 

than as a conditional affirmation of the consequent. If, after we have made such an affirmation, 

the antecedent turns out true, then we consider ourselves committed to the consequent, and are 

ready to acknowledge error if it proves false. If on the other hand the antecedent turns out to 

have been false, our conditional affirmation is as if it had never been made. [QUIN82 p21] 
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Consequently, he claims that the choice of declaring a conditional to be true whenever the antecedent is false 

is arbitrary. Kneebone, who relies on truth tables to define material implication rather than examples, makes a 

similar point — 

The truth-values that are to be ascribed to → in cases in which  is false are unimportant, since 

we do not draw conclusions from premises unless these are known to be true, or at least assumed 

to be true for the sake of the argument; but it greatly simplifies the formal logic of propositions if we 

define the truth-value of → in all cases, taking it as T whenever  has the truth-value F 

(compare with such conventional definitions in mathematics as a0=1 and 0!=1). [KNEE63 p31, 

emphasis mine] 

Mendelson also claims that the truth-functional definition is simply a convention, though it is also justified by 

the desire that (P&Q)P should be a tautology [MEND64 p13]. 

Korfhage uses a pedagogically fascinating, though technically misguided analogy with computer 

programming to show why a conditional should be treated as true if the antecedent is false. He writes that 

given PQ, where P is known to be false, it is true that we can’t deduce anything about Q, however, we don’t 

want the argument to stop there. Compare this with a FORTRAN program containing the statement “IF ALPHA 

.GT. X+7 GOTO 13”. Even if “ALPHA .GT. X+7” is false, the overall statement is a good piece of FORTRAN and we 

want the program to continue running. Hence, so as not to disrupt an argument, we assign PQ the value 

true whenever P is false. [KORF74] 

This approach may appeal to students who already understand the FORTRAN “if” statement. However, there 

is some evidence that children who have been taught the “if ... then ... else” programming construct  

misconstrue conditional statements as bi-conditionals [SEID89]. That is, after being exposed to the program 

language interpretation of an “if” statement, they infer an incorrect truth table for material implication. 

Korfhage’s approach is technically misguided since it confuses a form of conditional in which the antecedent 

and consequent are causally connected (“if the condition ALPHA .GT. X+7 is true then the next thing to do is 

execute the instruction at line 13”) with the truth functional form which requires no causal connectivity. 

The method of choosing or contriving an example which fits the author’s intention is rather artificial. A more 

sophisticated approach is to note that the English “if ... then ...” structure is used in a variety of senses and that 

since we need to use symbolic operators unambiguously, we must choose just one of those senses. According 

to Church, “we select the one use of the words ‘if ... then’ ... in which they may be construed as denoting a 

relation between truth-values” [CHUR56 p38]. 

Reichenbach, who uses a truth table to define the horseshoe operator, makes a useful distinction between 

adjunctive implication and connective implication. 

It recently happened in Los Angeles that, while the screen of a movie theatre was showing a 

blasting of lumber jammed in a river, an earthquake shook the theatre. The implication “the 

blasting of lumber on the screen implied the shaking of the theatre” was then true in the 

adjunctive sense whereas it was false in the connective interpretation. ... We realise that the word 

“implies” here has not the same meaning as in conversational language; the implication in this 

case simply adjoins one statement to the other without connecting the statements. Adjunctive 

implication has a wider meaning than connective implication; if a connective implication holds, 

there also exists an adjunctive implication, but not vice versa. [REIC47 pp29,30] 

Copi’s “Introduction to Logic” has the most extensive variant of this approach. After explaining how we 

choose one of the two senses of the English “or” (the inclusive rather than exclusive sense), he lists four senses 

of implication and then chooses the one which can be written symbolically as ~(P&~Q). Choosing this 

interpretation over the other three is not arbitrary. Rather, he shows that this definition specifies the common 

ground between the four senses. [COPI67 pp245–252] 
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Galton argues that the truth table definition is the minimal truth-functional definition which will apply to all 

conditional statements. 

Even though → may not capture everything that is implied by “if ... then ...”, at least we can say 

that a statement of the form A→B will be true whenever (if not more often than) “if A then B” is 

true, so that the English inference with statements of this form amongst its premises will be valid 

so long as the propositional calculus translation is. [GALT90 p57] 

Georgacarakos and Smith devote many pages to this same point [GEOR79 p53ff]. Forbes discusses various 

linguistic issues related to conditional statements and only later constructs a truth table to fit selected English 

examples [FORB94]. 

4. Avoiding any Truth-Functional Definition 

Another way to tackle the problematic definition of material implication is to avoid explicit definition 

altogether [FITC52, LEMM71, POSP84]. Fitch uses a natural deduction system in which conditional 

expressions may be manipulated by Modus Ponens and Distribution4. No mention is made of truth tables and 

(~PQ)(PQ) is left as an exercise for the reader [FITC52]. Lemmon follows a similar path, using the symbol 

 in proofs long before defining it as a truth function. He uses a natural deduction system with ten Rules of 

Derivation to prove that PQ, ~PQ and ~(P&~Q) are all interderivable. When he eventually gets around to 

discussing truth tables, it is then clear that PQ should be defined to have the same truth table as both ~PQ 

and ~(P&~Q). Even so, he admits that the truth table definition of material implication “seems rather arbitrary” 

[LEMM71 pp67–68]. 

5. Using Peirce’s Notation5 

Another approach relates material implication to the mathematical concept of less-than-or-equal-to. This is 

inspired by Peirce, who used a modified “≤” sign to stand for material implication in 1885 [HART74 paragraph 

3.373]. The implication PQ can be explained by showing that the truth of Q is at least as certain as the truth 

of P, because Q must be true whenever P is true, but Q can also be true on other grounds independent of P. If 

the value “true” is interpreted to be greater than the value “false”, then the truth table for material implication 

will be identical to the truth table for less-than-or-equal-to. 

This explanation may be especially useful for computer science students since they will already have a mental 

correspondence between “true” and “false” and the binary values 0 and 1. 

6. Justification Based on Universal Quantification 

Although most textbooks introduce material implication well before quantification, this need not be the case. 

For a student already familiar with the idea that a universally quantified expression is like an infinite 

conjunction, the following approach may help to explain the truth table for material implication. 

Suppose we have symbolised the claim that “All wolves are carnivorous” as x(W(x)C(x)). We want this 

claim to be true, and thus require that the expression W(x)C(x) be true for every possible value of x, 

including values of x which are not wolves. Motivated by this, we can ask ourselves what to do in the case 

when x is a wolf and also carnivorous, in the case when x is neither a wolf nor carnivorous, etc, and fill in the 

four rows of a truth table accordingly. It will be seen that even when W(x) is not satisfied, the expression 

W(x)C(x) must be designated as true in order that the overall statement x(W(x)C(x)) is confirmed. 

[GRAN96] 
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7. Definition Based on the Idea of Contracts 

In [NISB87], Nisbett et. al. claim that an effective way to teach conditional logic is to draw on pre-existing 

concepts rather than to define an entirely new concept. The pre-existing concepts they suggest are those of 

permission and obligation, both of which are forms of contract. 

The statement “In order to do some action P you must have permission Q” follows precisely the same truth-

function as PQ. A contract of permission is violated only when the action P is performed without the 

required permission Q. If P is performed with permission Q, or if P is not performed at all, then the permission 

contract stands unviolated. 

The statement “If you perform some action P then you are obligated to do Q” follows the same pattern. Such 

an obligation is violated only when P occurs but not Q, and hence an obligation schema behaves the same as 

material implication. This schema may also be presented in terms of promises, though perhaps not as effectively 

since a promise is typically less strictly specified than a legal obligation [LABU93, GRAN96]. 

Note that permission and obligation are not presented simply as examples as described in the third category 

above. Rather, the aim is to proffer these to students as inference schema with which they are already well 

acquainted, and to indicate that processing conditional statements should be undertaken using those same 

schema. 

8. Definition Based on Elementary Set Theory 

If one can assume that students have an understanding of the basic concepts of set theory, then those concepts 

can be matched with parallel concepts in boolean logic. Negation can be explained as the logical counterpart 

to set complementation; conjunction as the counterpart to intersection; disjunction as the counterpart to union6; 

material implication as the counterpart to the subset relation; and the bi-conditional as the counterpart to set 

equivalence. This approach does not imply that there is a formal equivalence between set expressions and 

propositional expressions, but rather that set operators invoke the same reasoning schema as propositional 

operators. 

Students familiar with set concepts will understand the assertion PQ to mean that every element of P is also 

an element of Q. But this is a disguised form of the assertion “if x is an element of P then x is an element of Q”, 

or symbolically, xP x Q. Thus, an appropriate explanation of the subset relationship can provide a very 

clear justification of a truth-functional material implication. 

Such an explanation may proceed as follows. Consider four arbitrary members of the universe x1,x2,x3 and x4 

such that x1P and x1Q, x2P and x2Q, x3P and x3Q, x4P and x4Q. Three of these (x1,x3 and x4) are 

consistent with the assertion PQ, but the fourth (x2) is inconsistent with that assertion (see Figure 2). The 

claim PQ can only be shown to be false by finding an object which is a member of P but is not a member of Q. 

By analogy, the claim PQ is only false in the circumstance where P is true but Q is not true. The truth table 

for PQ will have three rows (corresponding to x1,x3 and x4) marked as true and one row (corresponding to 

x2) marked as false. 
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Figure 2 — What would disprove that PQ? 

I have not seen a textbook which explicitly links the definition of logical operators to set operators in this way, 

but I have found this approach effective in the classroom. The approach has several advantages — 

• Since students already have a grounding in set theory, the approach defines new concepts in terms of 

familiar concepts. 

• The visual model of set structures given by Venn Diagrams can immediately be transferred as a tool to 

aid understanding of logical expressions. 

• The definition of material implication is no longer “arbitrary”, as some of the authors quoted above 

apologetically assert. The truth table for material implication can be shown to follow naturally from the 

subset relationship PQ which unambiguously disallows the situation where membership of P is true 

but membership of Q is false, and allows the other three possible situations. 

Conclusion 

When introducing the concept of material implication to students, a teacher may choose from a number of 

techniques. Eight such techniques have been described in this paper and we have noted that some emphasise 

technical correctness while others more directly promote student understanding. 

Our suggestion is that defining material implication by truth table provides insufficient explanation or 

justification for many students. Such definitions may enable students to manipulate logical expressions 

correctly, but with only a surface-level understanding of what they are doing. Techniques such as definition 

based on the subset relationship and definition based on the idea of a contract should be used to promote 

deeper conceptual understanding. 
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End Notes 
 
1 Manna and Waldinger have the added novelty of defining a truth table for “if ... then ... else”! [MANN85, 

p13] 

2 Peirce provides a summary of the debate between Philo and Diodorus on whether hypothetical propositions 

(i.e. conditionals) are at all different from categorical propositions. Philo claims (and Peirce agrees) that the 

forms “If P then Q” and “Every P is Q” are identical, but Diodorus (supported by Peirce’s contemporary 

Shröder) claims they have different meanings. [HART74, paragraph 3.439ff, written in 1896] 

3 There is at least one book which actually takes this approach — [BELL77]. 

4 The rule of Distribution may be symbolised as P(QR)  (PQ)(PR). 

5 Suggested by John Sowa <sowa@turing.pacss.binghamton.edu> pers. comm. 

6 The English word “or” is sometimes interpreted inclusively and sometimes exclusively, and when 

introducing logical connectives one must somehow address the issue of which way to interpret disjunction. 

Various approaches are used in textbooks, but a key advantage of presenting disjunction as the counterpart to 

union is that it provides a very natural rationale for making disjunction inclusive — just as the set AB 

includes elements which are common to both sets, so AB is true even when both disjuncts are true. 


