
Visualising Boolean Operations on a
Hypercube

Matthew C. Clarke -- 1993

Department of Computer Science

University of Natal, Pietermaritzburg, South Africa

Abstract

Although it is known that every boolean function can be represented as a subgraph of a
hypercube [Harary, 1989], the implications of this fact have been little explored. We
show a method for constructing such graphs which allows any formula of propositional
logic to be visually represented. Boolean operations can be defined as manipulations of
such graphs. A simple method is shown whereby the validity of propositional sequents
may be checked.

Keywords: Possible Models Diagrams, boolean function, hypercube, propositional
logic, truth table

1. Introduction

Although it is known that every boolean function can be represented as a subgraph of a hypercube
[Harary, 1989], the implications of this fact have been little explored. That is, how does one construct such
graphs and what does one do with them once they are constructed? Representing boolean functions as
graphs may provide an alternate scheme for automated propositional theorem proving, has been used to
define concurrent processing [Gupta and Pratt, 1993] and has useful pedagogical implications [Clarke,
1993].

This paper explains how propositional expressions can be represented by graphs which I call Possible
Models Diagrams, and defines procedures for combining such graphs according to the standard boolean
operators.

2. Any boolean function can be represented by a graph

The hypercube, or n-cube Qn is a graph of order 2n whose vertices are represented by n-tuples

<x1,x2,...xn> where xi{0,1}, and whose edges connect vertices which differ in exactly one term. Figure 1

shows Q3, where each vertex is labeled with an abbreviated triple showing the values of x1,x2,x3

respectively (eg we write the label “101” as an abbreviation for the triple <1,0,1>.

000

001

010

011

100

101

110

111

Figure 1. The 3-cube Q3

For every boolean function there is an equivalent function in the disjunctive form:
f(x1,x2,...xn) = m-1x1x2...xn + m-2x1x2...xn-1x’n + m-3x1x2...x’n-1x’n + ...

... + x’1x’2...x’n-1xn + x’1x’2...x’n (1)

where each i{0,1} for i=1,2,..,m and m=2n.

Harary has shown that if a boolean function of n variables is written in this form, then the terms of the
disjunction which have i=1 can be used to select a subset S of the vertices of Qn. The subgraph induced by

S can then be seen as a representation of the original boolean function.

For example, the function:
f(x1,x2,x3)=x1x2x3 + x’2x3 (2)

could be re-written as:
f(x1,x2,x3)=1.x1x2x3 + 0.x1x2x’3 + 1.x1x’2x3 + 0.x’1x2x3 + 0.x1x’2x’3 + 0.x’1x2x’3

+ 1.x’1x’2x3 + 0.x’1x’2x’3 (3)

and hence represented as the induced subgraph of Q3 whose vertices are 111, 101, and 001 as in Figure 2.

001 101 111

Figure 2. An induced subgraph of a boolean function

Perhaps we can more clearly illustrate the relationship between Q3 and the subgraph representing (3) by

leaving those vertices corresponding to terms with i=0 open, while darkening the vertices for terms with

i=1.

000

001

010

011

100

101

110

111

Figure 3. A more visually expressive representation

Given such an induced subgraph, the boolean function can easily be retrieved: simply form a disjunction
whose disjuncts are given by the vertices in the subgraph (in any order). If the subgraph is identical to Qn

then the function must be tautologous; if the subgraph is empty then the function must be inconsistent; in
other cases the function must be contingent.

However, given an arbitrary boolean function, it would seem from Harary’s approach [Harary, 1989] that
one must first do substantial algebraic manipulation to find an equivalent function in the form of (1) before
the subset S (and hence the subgraph induced by S) can be determined. This paper will describe another
procedure for constructing this induced subgraph, and such a procedure can actually be used as a method
for finding an equivalent function in the form of (1).

3. Any Propositional Formula Can be Expressed as a Boolean Function

It is implied by (1) that all boolean functions can be expressed using only the operators negation,
conjunction and disjunction. Nevertheless, there are other boolean operators (such as implication and the
bi-conditional) which play an important part in many systems of logic and many logical formulae are more
naturally expressed using such operators. In order to broaden the applicability of hypercubes to
propositional logic, we will also want to incorporate such other operators.

Definition 1 [compare with Lemmon, 1965 p44]
 A well-formed formula (wff) of propositional logic is defined recursively as -

i) Any propositional variable on its own is a wff.
ii) If  is a wff then so is ~
iii) If  and  are wffs then so are (&), (v), () and ().

Several notes should be made about this definition:
• Whereas truth values in propositional logic are normally designated as True and False, there is a

one-to-one correspondence between these values and the 1 and 0 of boolean algebra.
• In accordance with the usual truth-table definitions of the operators ~ (negation), & (conjunction),

v (disjunction),  (implication), and  (bi-conditional), each wff with n distinct propositional
variables V1,V2,...,Vn defines a function from V1xV2x...xVn into {0,1}.

• All logical connectives (apart from negation) are formally defined as dyadic operators.
Nevertheless, the propositional conjunction operator is associative and hence the wff
(V1&(V2&V3)) can be written as the unbracketed product V1V2V3 in boolean algebra. Likewise,

nested propositional disjunctions may be written as unbracketed sums in boolean algebra.
• Although this definition employs operators other than negation, disjunction and conjunction,

such operators may still be defined as boolean functions in the form (1). For instance the material
implication operator  can be defined as the function -

Implies(x1,x2) = x’1 + x2 = 1.x1x2 + 0.x1x’2 + 1.x’1x2 + 1.x’1x’2 (4)

Given Definition 1, any wff containing n distinct propositional variables may be expressed equivalently as
a boolean function of n variables, requiring only uses negation, disjunction and conjunction.

4. Constructing the Graph of a Propositional wff

Since all propositional wffs have an equivalent boolean function, and every boolean function can be
expressed in the form (1), and every function in the form of (1) can be represented by an induced subgraph
of a hypercube, it follows that every propositional wff may be represented as an induced subgraph of a
hypercube. In this section I describe two procedures for constructing such a graph: the first is most useful
as a visual procedure, while the second is more useful if the task is to be computerised.

Hypercubes are better drawn hierarchically

Throughout the rest of this paper I will use n to denote the number of distinct propositional variables in a
particular wff, thus allowing the wff to be shown as a subgraph of a hypercube of degree n. These
hypercubes will be drawn hierarchically rather than in the usual form with no line-crossings: that is,
instead of drawing Q3 as in Figure 1, I will draw it as shown in Figure 4.

111

110
101

100 001010

011

000
Figure 4. Preferred diagram for Q3

In these hierarchically-drawn hypercubes, vertices are arranged into n+1 rows (R0,R1,...,Rn) such that Ri

contains those
n

i








 vertices whose n-tuple contains exactly i zeros. Thus, the top row always contains the

single n-tuple <1,1,...,1> and the bottom row always contains just <0,0,...,0>. Within any row, the vertices
are arranged from left to right in decreasing of magnitude (when the vertices’ labels are considered as
binary numbers). The reason for this preference is that it allows hypercubes of any size to be constructed
and labeled in a standardised manner, and allows labels to be assumed rather than explicitly written.

A hypercube drawn in this manner, with the possibility that some vertices are darkened and others left
open, I call a Possible Models Diagram (PMD), for reasons which will later be clear. A PMD is a graph
GÑQn whose vertex set V is partitioned into two sets T(G) (the darkened vertices) and F(G) (the vertices

left open).

Each propositional operation corresponds to a visual manipulation of hypercubes

Following Definition 1, we can form induced subgraphs of Qn as follows -

i) Every propositional variable on its own can be represented as a subgraph containing exactly half the
vertices of Qn, namely, those vertices for which that propositional variable is True (ie 1). In other

words, a propositional variable Vi can be represented by a PMD X in which T(X)={<V1V2...Vn> |

Vi=1}. For example, in a system with two propositional variables, the propositional variable V1 may

be represented by the induced subgraph shown in Figure 5a, or more clearly by the PMD in Figure
5b.

1110

11

10

00

01

Figure 5a. Induced subgraph

for V1 in a system of two

variables

Figure 5b. Possible Models
Diagram for V1 in a system of

two variables

ii) Negation: if the wff  is represented by the PMD A, then the wff ~ can be formed by reversing the
open and darkened vertices of A. That is, by constructing the PMD X with T(X)=F(A).

iii) If the wffs  and  are represented by the PMDs A and B respectively, then the PMDs for (v),

(&), () and () can be constructed using the following visual operations -

 Disjunction: form the PMD for (v) by overlaying A onto B. That is, form a PMD X with
T(X)=T(A)T(B).

 Conjunction: form the PMB for (&) by matching-the-dots from A and B. That is, form a PMD X
with T(X)=T(A)T(B).

 Implication: form the PMD for () by reversing A and overlaying onto B. That is, form a PMD X
with T(X)=F(A)T(B).

 Bi-conditional: form the PMD for () by finding vertices in A and B which have equal value. That
is, form a PMD X with T(X)=(T(A)T(B))(F(A)F(B)).

Constructing a PMD (Algorithm 1)

Given a wff containing n distinct propositional variables, a PMD for that wff may be constructed by hand
as follows -

• Draw an appropriate PMD underneath every propositional
variable in the wff

• While (there is an operator for which no PMD has yet been
constructed but whose operand(s) have PMDs already) do

• Merge the PMDs of the operand(s) using the
appropriate visual operation defined above

end while
• The graph which was drawn last is the PMD for the wff

For example, consider the wff P(PvQ). Since the wff contains two distinct propositional variables, we can
represent it as an induced subgraph of Q2 and this subgraph can be constructed as a PMD as shown in

Figure 6.

P  (P v Q)

Figure 6. Constructing the PMD for a wff

Note: • When using this algorithm by hand, the vertices need not be labeled: the labels are assumed to
follow the convention described earlier.

 • The final PMD in Figure 6 has all vertices darkened, implying that the wff P(PvQ) is
tautologous.

One can now see the purpose of the nomenclature: a Possible Models Diagram is a graph G which has one
vertex for each possible model of n variables; and darkened vertices (those belonging to T(G)) indicate all
those models in which the wff is True. Even though many wffs may have the same PMD, any two wffs
with the same PMD will be logically equivalent. That is, each possible PMD represents an equivalence
class of wffs.

Constructing a PMD (Algorithm 2)

If the construction of PMDs were to be computerised, then the following recursive algorithm may be used -

• Parse the wff and build a binary tree with operators as nodes and
propositional variables as leaves

• To construct a PMD for the root node -
• If this node’s operator is not Negation then

• Construct a PMD for the left subtree
end if

• Construct a PMD for the right subtree
• Merge the two subtree PMDs in accordance with the

operation defined above for this node’s operator

This algorithm is simply a left-to-right depth-first traversal of the binary tree which reflects the structure of
the wff.

5. A comparison of Possible Models Diagrams and Truth Tables

There is, of course, a strong similarity between PMDs and Truth Tables. Both indicate the value of a

propositional expression for every possible model: whereas a PMD has 2n vertices, the corresponding truth

table has 2n rows. Either could be used to define the boolean operators. Once a PMD has been constructed,
it is a trivial matter to copy the information into a truth table, and vice-versa.

There are, however, two points in the favour of PMDs. One is that the visual nature of PMDs gives some
pedagogical advantage over truth tables [Clarke, 93]. The second relates to the way sequents of
propositional logic can be analysed by PMDs, as described in the following section.

PMDs can be used to prove the validity of propositional sequents

If A1,A2,A3,...,Am and B are propositional wffs, then A1,A2,A3,...,Am  B is a propositional sequent

claiming that the assumptions A1,A2,A3,...,Am entail the conclusion B. The validity of such a claim may be

established by showing that the corresponding conditional (A1(A2(A3...(AnB)...))) is a tautology.

As we have discussed, a wff may be shown to be tautologous by hand-constructing either a PMD or truth
table, but this may be cumbersome for complex sequents.

An alternate way to check the validity of a sequent is to compare the models for which the left-hand side is
true with the models for which the right-hand side is true. If the assumptions are to entail the conclusion,
then every model which satisfies the assumptions must also satisfy the conclusion. In other words, the

models which satisfy the conjunction1 of the assumptions must be a subset of the models which satisfy the
conclusion.

In terms of PMDs, a sequent A1,A2,A3,...,Am  B may be analysed as follows. First construct a PMD L for

the wff A1&(A2&(A3&...&Am)))) and a separate PMD R for the conclusion B. The sequent is valid if and

only if T(L)T(R).

For example, suppose we want to test whether the sequent P, ~(P&Q)  ~Q is valid. First, construct a PMD
for the conjunction of the assumptions and a separate diagram for the conclusion -

 P, ~ (P & Q)  ~ Q

In this example, T(L)={<1,0>} and T(R)={<1,0>,<0,0>}. Since T(L)T(R), the sequent P, ~(P&Q)  ~Q must
be valid.

This form of sequent validation could also be carried out using truth tables, but once again, the visual
effect of the PMDs make it somewhat easier. The same thing could also be achieved using boolean
functions in this way -- find a function in the form of (1) which is isomorphic to the conjunction of the
assumptions; find another function in the form of (1) which is isomorphic to the conclusion; then the
sequent is valid if and only if the first function is subsumed by the second.

6. Conclusion

Every propositional wff can be expressed as a boolean function, and hence as an induced subgraph of a
hypercube. A Possible Models Diagram is a hypercube in which vertices may be darkened to indicate this
induced subgraph. Given any wff, there is a straight-forward procedure for constructing that wff’s PMD
and this procedure can be executed either by hand or by computer.

PMDs can be used just as readily as truth tables to establish whether a wff is tautologous, contingent or
inconsistent. Furthermore, PMDs may be used to prove the validity of any propositional sequent.

References

Clarke,M.C.; Possible Models Diagrams: a visual alternative to truth tables in the ACM SIGCSE Bulletin,
v25, #1, March 1993

1 The commas between assumptions on the left-hand side of the sequent are taken as implicit conjunctions.

Gupta,V. and Pratt,V.R.; Gates Accept Concurrent Behavior in Proc. 34th Ann. IEEE Symp. on Foundations
of Comp. Sci., 1993, pp62-71

Harary,F., Hayes,J.P. and Wu,H-J; A survey of the theory of hypercube graphs in Computers and Maths
with Applications, v15, #4, 1988

Harary,F.; The graph of a boolean function, in the Journal of Experimental and Theoretical Artificial
Intelligence, #2, 1989

Lemmon,E.J.; Beginning Logic, Nelson’s University Paperbacks, 1971

