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Abstract 

Truth tables are a basic tool for teaching propositional 

logic. However, when students are unfamiliar with logic or 

come from educationally disadvantaged backgrounds, 

definitions of logical connectives based on truth tables are 

unintuitive and difficult to remember. This is especially the 

case with the truth table for material implication. 

Possible Models Diagrams are a visual representation of 

propositional expressions and hence offer an alternative to 

truth tables. Like truth tables, Possible Models Diagrams 

can be used to define basic logical connectives and to 

classify wffs as tautological, contingent or inconsistent. In 

addition, they show greater expressibility than truth tables 

in that they can be used to show whether or not a sequent is 

provable. Furthermore, they are simpler to learn and to 

remember because of their visual appeal. 

1. Introduction 

It is standard practice to introduce university students to 

truth tables quite early in computer science courses. Truth 

tables provide a convenient way to teach boolean logic, 

which forms the basis of the digital computer. Truth tables 

also introduce propositional logic concepts and are often 

presented along with some formal proof structure and 

associated rules of derivation. 

Later, the limitations of propositional calculus lead to the 

need for predicate calculus and here truth tables must be put 

aside. Nevertheless, the concepts described by truth tables 

form essential groundwork for any career in either logic or 

computing. 

Regardless of the fact that truth tables are virtually univer-

sally standard, they aren’t so sacrosanct as to make alterna-

tives unthinkable. Indeed truth tables do present some 

teaching problems which allow for some improvement. In 

particular, the truth table definition of material implication 

(and disjunction to a lesser extent) always confuses stu-

dents. The fact that an implication should be considered 

true when the antecedent is false is neither intuitive nor 

easily remembered. 

 

Karnaugh maps are sometimes presented in conjunction 

with truth tables, but in the interest of good pedagogy, this 

paper presents an alternative which is as equally expressive 

(indeed more expressive than truth tables), yet more intu-

itive to the novice and more easily remembered by the 

student. 

Section 2 presents a student’s-eye-view of Possible Models 

Diagrams (PMD), and then Section 3 supports the logical 

soundness of the approach. 

2. Possible Models Diagrams: a student guide 

Suppose P and Q represent two propositions. Then there 

are four possible states of the world: the state in which both 

P and Q are true; the state where P is true but Q is false; the 

state where P is false but Q true; and the state where both P 

and Q are false. We could show this situation in a simple 

graph - 

 

Each of these possible situations is called a model (or an 

interpretation) of P and Q and hence the graph is called a 

Possible Models Diagram (PMD). We show that some 

expression of propositional logic is true for a particular 

model by filling in the corresponding node of the graph. 

Thus the simple propositions P and Q are represented by 

the PMDs - 



   

 

2.1 Combining rules 

We have seen that Possible Model Diagrams are an easy 

way of visualising simple propositions and now show a 

number of ways of combining these diagrams to represent 

compound statements. 

2.1.1. Overlaying two diagrams has the same effect as dis-

junction (note the similarity with the set union operation) - 

 

     or     

 

 becomes      

2.1.2. Matching-the-dots on two diagrams has the same 

effect as conjunction (note the similarity with the 

set intersection operation) - 

 

     and         

 becomes      

2.1.3. Reversing each corner of a diagram is the same as 

negation (note the similarity with set complementation) - 

not        becomes    

2.1.4. How do we capture the idea of a subset in proposi-

tional logic? Suppose we want to establish that 

PQ (ie that if xP then xQ). Of the four possible 

models of P and Q, three are consistent with this 

subset relation (TT, FT and FF) (ie these three 

points could be plotted on a Venn Diagram where 

PQ) but the fourth (TF) is not. Hence - 

if          then      

 becomes      

Two things to note about this diagram - 

i) It is easy to remember that implication  has the dia-

gram   because the three dots look like an arrow 

pointing to the right. 

ii) When combining two diagrams as above, the visual 

procedure is to reverse the first diagram and overlay 

it on the second1. 

2.2 More complex expressions 

The equivalence relation for sets PQ is reflected in 

propositional logic by the bi-conditional: PQ is defined as 

(PQ)&(QP). This can be diagrammed by appropriate 

combinations of the previous operations - 

 (P    Q)   &  (Q    P) 

     

   -- Reverse and overlay 

  -- Match-the-dots 

The final outcome is intuitively sensible, since it shows 

those models in which the truth of P is exactly the same as 

the truth of Q. 

In fact a PMD can be constructed using the simple combin-

ing rules (reverse, overlay and match-the-dots) for any well-

                                                 
1 To the student, the procedure “reverse and overlay” is an 

easy habit to learn and it is only later that they discover that 

PQ is logically equivalent to ~PvQ. Some teachers may 

prefer to use this equivalence as a definition of material 

implication, in the same way that Copi [1] uses ~(P&~Q) as 

a definition. I find that students rebel against this use of fiat, 

but are more ready to accept the parallel between 

implication and subset. 

Lemmon [2] avoids this difficulty by never mentioning truth 

tables until the very end of his coverage of propositional 

calculus. In that way he can show how  works in formal 

proofs well before he is forced to define it. 



formed formulae which uses only two propositional vari-

ables. For example - 

eg1 P    ( P  v  Q) eg2 P    ~  Q  

      

   

   

eg3  (P  v  Q)  &  ~  (P  v  Q) 

     

   

  

  

Every wff falls into one of three categories - 

i) Tautology - a wff whose PMD has every corner 

filled in (eg1). ie a wff which is true however you 

interpret it. 

ii) Contingent - a wff whose PMD has some corners 

filled in but not all (eg2). ie a wff which is sometimes 

true and sometimes false. 

iii) Inconsistent - a wff whose PMD has no corner filled 

in (eg3). ie it is always false. 

2.3 Generalising to Three Variables 

If there are three propositional variables (say P,Q,R) in a 

wff, there will be eight possible models. These are best 

visualised as the corners of a cube whose opposing faces 

represent P and ~P, Q and ~Q, R and ~R respectively. 

However, this can be shown diagrammatically as the 

following two-dimensional graph - 

 

The combining rules (reverse, overlay and match-the-dots) 

can all be used as before. 

2.4 Provable sequents 

After showing how complex statements may be represented 

as symbolic propositional formulae, a course in logic is then 

likely to proceed to the concept of a structured argument. 

We describe a sequent in some form like A1,A2,A3,...,An  

B (meaning “the premises A1,A2,A3,...,An entail the 

conclusion B”) and then describe a range of derivation rules 

which allow one to proceed logically from one statement to 

the next in a proof of the sequent. 

In any propositional calculus, a sequent A1,A2,A3,...,An 

B may be shown to be valid (and hence provable) by 

showing that (A1(A2(A3...(AnB)...))) is a 

tautology, however, this is rather cumbersome in general. 

PMDs provide an alternate way to check whether a sequent 

is valid. 

Suppose we want to test whether the sequent P, ~(P&Q)  

~Q is valid. First, construct a PMD for the wffs on the left-

hand side (the comma is taken to be an implicit conjunction) 

and a separate diagram for the right-hand side - 

 P, ~ (P  &  Q)  ~ Q 

     

   

  

  

Now apply this simple rule: a sequent is valid if and only 

if the diagram for the premises is a subset of the 

diagram for the conclusion. In the example above, the 

possible models represented by  are a subset of those 

represented by  and hence the sequent is valid. 

3. Possible Models Diagrams: logical soundness 

3.1 Possible Models Diagrams are really sets 

In order to see that PMDs are a sound way of representing 

wffs, one has to first forget the lines connecting the graph 

and simply think of the nodes as the set of all possible 

models of n propositions Un = {<x1,x2,...xn> | xi{T,F}}. 

The lines link elements of this set in a certain way, but this 

is only important for the visual effect. 

For n=2, we get the set of all possible models of two 

propositions U2 = {<T,T>,<T,F>,<F,T>,<F,F>}. Now we 

only need to equate the first proposition P with the set 

{<x,y>U2 | x=T} and the second proposition Q with the 

set {<x,y>U2 | y=T}. 

Suppose W is the set representing some wff. Then the 

reverse operation is simply ~W = {<x,y>U2 | <x,y>W}. 

If V is a set representing some other wff, then overlay 

corresponds to VW = {<x,y>U2 | <x,y>V or 

<x,y>W} and match-the-dots corresponds to VW = 

{<x,y>U2 | <x,y>V and <x,y>W}. 

Thus, the operations defined on PMDs correspond to ex-

actly those primitive logical operations we expect. 



3.2 Converting between Truth Tables and Possible 

Models Diagrams 

Whereas a PMD represents all possible models as nodes on 

a graph, a truth table represents them as lines in a table. 

Given a PMD, it is simple to construct an equivalent truth 

table: for each node in the diagram, if the node is filled-in, 

place a T in the corresponding row of the table, otherwise 

place an F in the corresponding row of the truth table. 

Converting in the opposite direction is equally trivial. For 

example - 

 

3.3 Generalising to more than two propositional 

variables 

Given that a PMD is just a 

way of visualising the set of possible models (Section 3.1), 

it should be clear that such diagrams can be formed for wffs 

containing any number of propositional variables. In 

general, if a wff contains n distinct propositional variables, 

then its PMD will be an n-cube with 2n nodes (just as the 

corresponding truth table will have 2n rows). 

In teaching situations it is rare to set a truth table problem 

with more than three variables, and the same would apply to 

PMDs. Both methods in theory generalise, but in practice 

we would rarely use either method for cases where the 

number of variables is large. 

3.4 The rule for sequent validity 

In Section 2.4 we saw the rule “a sequent is valid if and 

only if the diagram for the premises is a subset of the dia-

gram for the conclusion.” This can be justified by again 

thinking in terms of sets. 

Suppose the conjunction of premises forms the wff X, 

represented by a PMD whose nodes form the set X’Un, 

and suppose the conclusion Y gives rise to a Diagram 

whose nodes form the set Y’Un. If X’Y’ then every 

possible model of the premises is also a model of the 

conclusion. 

Now if every possible model for which some condition X is 

true is also a model for which Y is true, then X is a 

sufficient condition for Y. Hence XY is necessarily true. 

Further,  XY  and  X  Y are equivalent and so from 

the fact that one PMD is a subset of a second, we can 

deduce that the wff represented by the second is derivable 

from the wff represented by the first. 

Conversely, if Y can be derived from X (ie X  Y is a valid 

sequent), then it must be that XY is a tautology. This is 

the case exactly when ~XvY is also a tautology. Now 

according to our set interpretation (Section 3.1), this is the 

same as saying that the set {<x1,x2,...xn>Un | 

<x1,x2,...xn>X’ or <x1,x2,...xn>Y’} is equivalent to Un. 

But this equivalence is only possible when X’Y’. 

4. Pedagogical Comments 

The use of PMDs in our first year computer science course 

has shown reasonable success. It was felt in our department 

that even if PMDs were used to introduce logical concepts, 

we would still teach truth tables as well because of their 

prevalence in the computing discipline. 

Admittedly the sample size is small (65 students) and the 

statistical analysis informal, but students seemed to grasp 

the concepts easily and when given the choice preferred to 

use PMDs rather than truth tables. In exam conditions, only 

11%  chose to use truth tables to analyse expressions with 

two variables, though 46% chose truth tables for a more 

complicated three-variable example. Not only did most 

people choose to use PMDs, but those who did had a lower 

error rate (18%) than those who used truth tables (58%).  

Two pedagogical issues need to examined by anyone think-

ing of teaching with PMDs. First, one must question 

whether the logical concepts underlying truth tables are 

likely to be so difficult for students to understand and 

remember that an alternative approach is worth considering. 

The visual approach is certainly more appealing to some 

students, but if they must still learn truth tables, is the extra 

effort worthwhile? In many situations this will not be the 

case, but PMDs will be particularly useful when trying to 

teach logical concepts to students with poor educational 

backgrounds (as is often the case in developing countries). 

Second, one must be careful that the students do not learn 

the visual manipulations (reverse, overlay and match-the-

dots) simply as syntactic operations. The semantic reasons 

behind these operations must be repeatedly stressed so that 

the logical concepts behind PMDs are clearly understood. 

(This applies equally to teaching with truth tables.) One way 

of ensuring this is to frequently ask students to translate 

PMDs into appropriate English propositions and vice-versa. 

     

P   Q P & Q 

T   T 

T   F 

F   T 

F   F 

T 

F 

F 

F 



5. Conclusion 

Although truth tables are the standard way of introducing 

boolean logic, a more visual teaching tool has some 

advantages. This paper has presented the Possible Models 

Diagrams as such a visual tool. PMDs are simple to learn 

and manipulate and hence more enjoyable and memorable 

for students. 

Theoretically, nothing is lost by using Possible Models 

Diagrams rather than truth tables: they can both be used to 

define basic logical operations and to test whether a wff is 

tautologous, contingent or inconsistent. Furthermore, 

Possible Models Diagrams can also be used for a task which 

is difficult for truth tables, namely to check the validity of a 

sequent. 
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