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1. Aim and Context 

This century has seen massive advances in the methods of formal logic and this has lead to equally 
massive changes in the content of courses on logic. At the same time, a wealth of research has shown 
that human cognition rarely follows the patterns of formal logic and that, consequently, formal logic 
is difficult to learn. (See [GILH88] for a well-balanced review of research into the extent to which 
people use logic in their normal thought patterns, especially Chapter 5.) 

The research presented in this paper was motivated by the desire to develop new approaches to 
teaching logic which would enhance both the learning of formal logic and the transfer of that learning 
to practical situations. The research addresses propositional logic and the problems associated with 
the use of truth tables to define logical operations. For instance, it is well established that people have 
difficulty reasoning about conditional statements and that the truth-functional definition of material 
implication is not intuitively obvious [see for instance OBRI72, OBRI73, SHAP73, GILH88 pp113-123, 
EVAN82 Chapter 9, WASO83]. Various explanations have been offered to account for this and 
various techniques have been used to justify the truth-functional definition [CLAR96]. 

The first year computer science course at the University of Natal (Pietermaritzburg) includes an 
introductory logic module which covers various aspects of informal logic, set theory, propositional 
logic, predicate logic and brief glimpses of modal, multi-valued and probabilistic logics. 
Approximately 12 class sessions are spent on propositional logic over a period of four weeks. 

A variety of teaching techniques were developed within the context of this course, but one in 
particular involved a major shift away from the traditional approach. Whereas most courses on 
propositional logic focus on truth tables, this course uses Possible Models Diagrams to both define 
logical operators and to construct logical proofs. Possible Models Diagrams (PMDs) are simple 
graphs which may be used to represent propositional expressions. Technically, these graphs are 
hypercubes in which the vertices are partitioned into two sets: one representing the possible models 
in which the propositional expression turns out to be true, and the other representing the possible 
models in which the propositional expression turns out to be false. PMDs can be used to define 
boolean operators, to analyse whether a propositional expression is tautological, contingent or 
inconsistent, and to determine the validity of propositional sequents. 

Another significant difference between this course and many other introductions to propositional 
logic is that the logical operators are explained in terms of set operations. This immediately removes 
the confusion over whether the logical disjunction should be inclusive or exclusive, and gives a 
strong intuitive justification for the problematic truth-functional definition of material implication. 

This paper commences with a student’s-eye-view of Possible Models Diagrams, excerpted from 
[CLAR93]. For a more technical description, see [CLAR94]. This description is followed by an 
evaluation of the method, based on classroom data collected over three years. 



 

2. A Description of the PMD Approach 

2.1 Elementary Possible Models Diagrams 

Suppose P and Q represent two propositions. Then there are four possible states of the world: the 
state in which both P and Q are true; the state in which P is true but Q is false; the state in which P is 
false but Q true; and the state in which both P and Q are false. We could represent this situation by 
the simple graph shown in Figure 1. 

 

Figure 1 — The Four Possible Models of P and Q 

Each of these possible situations is called a model (or an interpretation) of P and Q and hence the 
graph is called a Possible Models Diagram (PMD). We show that some expression of propositional logic 
is true for a particular model by filling in the corresponding node of the graph. Thus the simple 
propositions P and Q are represented by the PMDs shown in Figure 2a and Figure 2b respectively. 
Note that here we have abbreviated the vertex labels. Once we are used to the PMD structure, the 
labels can be completely omitted — as long as the standard orientation is used, the labels can be 
inferred when necessary. 

    

Figure 2a — PMD for P  Figure 2b — PMD for Q 

2.2 Combining Rules 

We have seen that Possible Models Diagrams are an easy way of visualising simple propositions and 
now show a number of ways of combining these diagrams to represent compound propositional 
statements. 

• Overlaying two diagrams has the same effect as disjunction (Figure 3). Note the similarity 
between overlaying and the set union operation. 

     or          becomes      

Figure 3 — Overlay — the Visual Operation for Disjunction 



 

• Finding the corners which match on two diagrams has the same effect as conjunction (Figure 
4). Note the similarity with the set intersection operation. 

     and          becomes      

Figure 4 — Match — the Visual Operation for Conjunction 

• Reversing each corner of a diagram has the same effect as negation (Figure 5). Note the 
similarity with set complementation. 

not          becomes      

Figure 5 — Reverse — the Visual Operation for Negation 

• Reversing one PMD and overlaying it on a second has the same effect as material implication1 
(Figure 6). Note the similarity with the subset operator. It is easy to remember that material 

implication  has the diagram   because the three dots resemble an arrow pointing to the 

right. 

if          then          becomes      

Figure 6 — Reverse-and-overlay — the Visual Operation for Material Implication 

Overlay, match, reverse and reverse-and-overlay can be presented to students as visual operations 
which correspond to the notions of disjunction, conjunction, negation and material implication 
respectively, if such notions have already been defined. Alternatively, these visual operations may be 
presented as definitions of the corresponding logical operations. 

                                                         

1 To the student, the procedure “reverse and overlay” is an easy habit to learn and it is only later that 
they discover that PQ is logically equivalent to ~PvQ. Some teachers may prefer to use this 
equivalence as a definition of material implication, in the same way that [COPI67] uses ~(P&~Q) as a 
definition. I find that students rebel against this use of fiat, but are more ready to accept the parallel 
between material implication and subset. 



 

2.3 More Complex Expressions 

Set equivalence PQ is reflected in propositional logic by the bi-conditional: PQ is defined as 
(PQ)&(QP). This can be diagrammed by appropriate combinations of the previous operations, as 
shown in Figure 7. 

(P  Q) & (Q  P) 

     

   — Reverse and overlay 

  — Match 

Figure 7 — Visual Operations for the Bi-conditional 

The final outcome is intuitively sensible, since it shows those models in which the truth of P is exactly 
the same as the truth of Q. 

In fact a PMD can be constructed using the three basic combining rules (reverse, overlay and match) 
for any well-formed formulae which uses only two propositional variables. Figures 8a, 8b and 8c 
show three examples. 

 P     ( P  v  Q) P     ~  Q  (P  v  Q)  &  ~  (P  v  Q) 

          

     

    

  

Fig 8a — PMD for P(PvQ) Fig 8b — PMD for P~Q  Fig 8c — PMD for 

(PvQ)&~(PvQ) 

Every well-formed formulae falls into one of three categories — 

i) Tautology — a formula whose PMD has every corner filled in (e.g. Figure 8a), i.e. a formula 
which is true however you interpret it. 

ii) Contingent — a formula whose PMD has some corners filled in but not all (e.g. Figure 8b), i.e. 
a formula which is sometimes true and sometimes false. 

iii) Inconsistent — a formula whose PMD has no corner filled in (e.g. Figure 8c), i.e. a formula 
which is always false. 

2.4 Converting Between Truth Tables and Possible Models Diagrams 

Whereas a PMD represents all possible models as nodes on a graph, a truth table represents them as 
lines in a table. Given a PMD, it is simple to construct an equivalent truth table: for each node in the 
diagram, if the node is filled-in, place a T in the corresponding row of the table, otherwise place an F 
in the corresponding row of the truth table. Converting in the opposite direction is equally trivial. An 
example is shown in Figure 9. 
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Figure 9 — Translating Between a PMD and a Truth Table 

2.5 Generalising to more than Two Propositional Variables 

If there are three propositional variables (say P, Q, R) in a formula, there will be eight possible 
models. These are best visualised as the corners of a cube whose opposing faces represent P and ~P, 

Q and ~Q, R and ~R respectively2. However, this can be shown diagrammatically as a two-
dimensional graph (Figure 10). 

TTT

TTF
TFT

TFF

FTT

FTF
FFT

FFF

Each triple repre sents 

the truth value s of 

P ,Q and R respectively

 

Figure 10 — A PMD for Three Variables 

Similar two-dimensional diagrams can be formed for formulae containing any number of 
propositional variables. In general, if a formula contains n distinct propositional variables, then its 

PMD will have 2n nodes (just as the corresponding truth table will have 2n rows). 

In teaching situations it is rare to set a truth table problem with more than three or possibly four 
variables, and the same would apply to PMDs. Both methods generalise in theory, but in practice we 
would rarely use either method for cases where the number of variables is larger than four. 

The combining rules (reverse, overlay and match) can all be used as before. 

2.6 Provable Sequents 

After showing how complex statements may be represented as symbolic propositional formulae, a 
course in logic is then likely to proceed to the concept of a structured argument. We first describe a 
sequent in some form like A1,A2,A3,...,An  B (meaning “the premises A1,A2,A3,...,An entail the 

conclusion B”). We then describe a range of derivation rules which allow one to proceed logically 
from one statement to the next in a proof of the sequent. 

In any propositional calculus, a sequent A1,A2,A3,...,An B may be shown to be valid by showing 

that (A1(A2(A3...(AnB)...))) is a tautology, however, this is rather cumbersome in general. 

PMDs provide an alternate way to check whether a sequent is valid. Suppose we want to test whether 
the sequent P, ~(P&Q)  ~Q is valid. First, construct a PMD for the formulae on the left-hand side 

                                                         
2 In teaching this section a real cube is a useful visual aid. 



 

(the comma is treated as an implicit conjunction) and a separate diagram for the right-hand side 
(Figure 11). 

 P, ~ (P  &  Q)  ~ Q 

     

   

  

  

Figure 11 — Validation of the Sequent P, ~(P&Q)  ~Q by PMD 

Now apply this simple rule: a sequent is valid if and only if the diagram for the premises is a subset 

of the diagram for the conclusion.3 In the example above, the possible models represented by  are 

a subset of those represented by  and hence the sequent is valid. 

3. Evaluation 

Once these techniques described above were fully developed and used in the first year computer 
science course for several years, the developer sought to evaluate how effective the approach had 
been. Data from past tests, assignments and exams was analysed both quantitatively and 
qualitatively to compare problem-solving accuracy using truth tables and PMDs. Questionnaires 
were used to investigate student satisfaction with the new approach. 

3.1 Quantitative Analysis 

Since the analysis was largely retrospective rather than following an previously devised experimental 
design, the quantitative data is incomplete and poorly structured. Furthermore, the attempt to 
establish whether students learn logical concepts from PMDs more readily than from truth tables is 
confounded by the fact that the teacher is an enthusiastic proponent of PMDs. For these reason, 
statistical analysis of the available data yields ambiguous results. 

In a variety of tests, exams and assignments over three years, students were set questions which 
required either truth tables, PMDs or both to be constructed. For instance, 50 students answered the 
following question in a Class Test during 1992 — 

Draw either a possible models diagram or a truth table for each of the 
following formulae. Classify each formula as either contingent, 
tautologous or inconsistent. 

i) (PQ)(Qv~P) 

ii) ~(PvQ)&(PvQ) 

iii) (P&~R)Q 

In the two-variable examples (i and ii), 89% of students chose to draw PMDs rather than truth tables, 
and those who did choose the PMD approach were more likely to produce correct answers (with an 
odds ratio of 7.90 compared to 2.67 for truth tables). With the three-variable example (iii), 52% chose 
to draw PMDs and those who did choose the PMD approach were more likely to produce correct 
answers (with an odds ratio of 1.36 compared to 0.38 for truth tables). 

                                                         
3 At least, that is a simplified statement of the rule which is easily remembered by students. The fully 
stated rule is “A sequent is valid if and only if the set of models which satisfy the conjunction of the 
premises (as indicated by the PMD) is a subset of the models which satisfy the conclusion (as 
indicated by the PMD).” 



 

These statistical results are typical in several aspects — 

• With both two- and three-variable formulae, the majority of students chose PMDs rather than 
truth tables, but this preference for PMDs is less pronounced in the three-variable examples; 

• Those who chose to use PMDs have a higher success rate than those who use truth tables; 

• However, these differences are often not statistically significant. 

In summary, the tendency of the quantitative analysis suggests that students perform at least as well 
when they use PMDs as when they use truth tables. Furthermore, students showed some preference 
for using PMDs rather than truth tables, especially for simple examples. 

3.2 Qualitative Analysis 

The same data used for the quantitative analysis above yielded several useful qualitative features. For 
instance, several students voluntarily doodled PMDs while working with truth tables, and it may be 
deduced that they were using this as an aid to remembering the truth-functional definitions. 

More significantly, the sort of mistakes made while using PMDs differ from the those made when 
using truth tables. This gives a clear indication that the two representations give rise to different 
learning biases, even though they are technically equivalent. Furthermore, an examination of typical 
mistakes can suggest modifications to the teaching process to either avoid or address those mistakes. 

• With truth tables, the vast majority of mistakes occur when processing the  sign, reflecting 
the conceptual difficulties related to the truth-functional definition of material implication. 
Some mistakes indicate confusion about the order of columns of a truth table. Some mistakes 
relate to processing conjunctions. Some students fail to construct the correct number of rows in 
the table or label the rows incorrectly. 

• By comparison, mistakes involving material implication with PMDs are rare. The most 
common mistakes relate to the orientation of the PMD (i.e. confusion about the positioning of 
labels) but these are often not fatal. Occasionally students use a two-variable PMD when they 
should use a three-variable one. Some students confuse the diagram for Q with the diagram for 
~P. Some mistakes result from not following the visual procedures correctly. In some complex 
cases, a student may incorrectly omit one or more diagrams. 

In addition to the student assessment data, an indication of student satisfaction can be inferred from 
the course evaluation questionnaire. Once again, this data was not collected with the primary 
intention of quantitatively evaluating  PMDs. Rather, the questionnaires were designed to give 
feedback about the quality of the overall course content and of the lecturer. However, the data 
indicates that student satisfaction with PMDs and with the overall approach compared quite 
favourably with other courses taught by the same lecturer. There was a clear improvement in student 
satisfaction from 1992 to 1993 as the approach was refined. 

4. Conclusions 

The PMD approach is technically as sound as the traditional truth table approach. Further, it appears 
from this research that the PMD approach has some pedagogical advantages. Although further 
testing is required, we may make the following tentative conclusions — 

1. Students have less difficulty accepting truth-functional definitions of logical operations when they 
are introduced by analogy with set operations. 

2. The data collected suggests both that students prefer to use PMDs rather than truth tables and that 
when they do use PMDs they have a higher likelihood of giving correct answers. However, it 
must be stressed that the nature of the data makes these conclusions uncertain. 

3. The combination of a set-theoretical justification for material implication and the use of PMDs 
reduces the number of mistakes relating to material implication. 



 

4. The advantage of PMDs for the purpose of teaching is possibly because they are iconic, that is, 
they are symbolic pictures which combine the expressive power of symbolism with the 
memorability of visual images. 

5. The issue of whether this approach improves the students’ ability to transfer formal logical 
concepts to informal domains still requires further study. My hunch is that transfer is neither more 
nor less encouraged by any single representation, but is substantially more encouraged when a 
number of different representations are taught together. 
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